Precalculus

7-02 Parabolas

Parabolas

- Set of all points in a plane that are \qquad from a fixed line, called the \qquad and a fixed point, called the \qquad
- Vertex
- max or min point
- midpoint between the \qquad and \qquad -.
- Axis of symmetry
- line perpendicular to the \qquad
- goes through the \qquad and \qquad -.
- Parabola bends \qquad the focus and \qquad from the directrix.

Vertical Parabola

- $\quad p=$ directed $(+,-)$ distance from vertex to focus
- Vertex (h, k)
- Focus (h, $p+k$)
- Directrix $y=k-p$

$$
(x-h)^{2}=4 p(y-k)
$$

Horizontal Parabola

- $\quad p=\operatorname{directed}(+,-)$ distance from vertex to focus
- Vertex (h, k)
- Focus $(p+h, k)$
- Directrix $x=h-p$

$$
(y-k)^{2}=4 p(x-h)
$$

Find the vertex, focus, and directrix of the parabola given by $y=\frac{1}{2} x^{2}$.

Find the standard form of the equations of a parabola with vertex at $(0,0)$ and focus $(-2,0)$.

\qquad

Find the vertex, focus, and directrix of the parabola given by $x^{2}-2 x-16 y-31=0$.

Graph $(x-1)^{2}=16(y+2)$

Write the standard form of the equation of the parabola with focus $(1,2)$ and directrix $x=3$.

